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For a class of dynamical systems of the form ẋ = q(x)−u(x, y), ẏ = ε(v(x,y)−r(y)), we
prove boundedness of all solutions in the positive time direction. We discuss the existence
of stable limit cycles for the simplest autocatalytic reaction involving two internal and two
external reactants, as well as for a number of other models arising in applications.

1. Introduction

Over a long period of years it has turned out that numerous models in chemistry,
biochemistry, biology and population ecology obey a set of differential equations of
the following form: {

ẋ = q(x)− u(x, y),
ẏ = ε(v(x, y)− r(y));

(∗)

see section 4 for an account of a few examples. In (∗), q describes the input and
possibly output of one agent, r the output (i.e., removal) and possibly input of a
second agent, and u and v describe some mechanism of conversion of the first agent
to the second agent (e.g., in an enzyme reaction or a population model). ε is a scaling
parameter.

We are interested in boundedness of the solutions, mainly as a prerequisite for
applying the Poincaré–Bendixson theorem to obtain periodic solutions. In section 2, we
formulate a set of nine conditions of (∗) under which we prove forward boundedness
of all solutions in the nonnegative quadrant (theorem 2.1). The number of conditions
admittedly is appalling; but in most applications (with q, r, u, v rational functions)
these are easily checked or even trivially fulfilled. On the other hand, some of the
conditions are quite natural in the context of the applications, see the comments in
section 2. Above all, our result is flexible enough to handle models originating from
areas far apart (cf. section 4).

Boundedness of solutions in positive time direction and the existence of periodic
solutions or even limit cycles are the main features one is looking for in studying
2-dimensional models from a qualitative point of view. Systems of the form (∗) in
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particular occur in describing chemical reactions based on mass action kinetics and can
be considered generalizations of the original Lotka–Volterra model. Schnakenberg [16,
17] and Császár et al. [2] provide candidates for limit cycle behavior. Escher [7] detects
the coexistence of several limit cycles in quadratic systems. Póta [13] gives a rigorous
proof of non-existence of limit cycles for two-component bimolecular systems, a result
already stated by Hanusse as well as Tyson and Light. A similar result, also valid in
higher dimensions, is achieved by Tóth [21].

Our principal application (cf. remarks 4.1, 4.3 and 4.5 and propositions 4.2
and 4.4) refers to the simplest autocatalytic chemical reaction set involving two inter-
nal reactants X,Y whose concentrations vary in time, and two external ones A,B of
constant concentrations (cf. [16,17]). The stoichiometric equations are

mX + nY ↔ m′X + n′Y (0 6 m′ < m, 0 6 n < n′),
A↔ αX (α > 0),

βY ↔ B (β > 0).

Under a very weak hypothesis on the reverse rate constants of the second and third
equations above, we can prove forward boundedness of all solutions (proposition 4.2).
An example from glycolysis (cf. remark 4.3) shows that one cannot do without the
hypothesis mentioned. Finally, we show that when β < n, then there are positive rate
constants realizing periodic solutions (proposition 4.4).

This contrasts with the global asymptotic stability of a stationary point and there-
fore the absence of periodic solutions in the slightly different model, investigated by
Hering [9], with reaction steps A+X ↔ 2X, X + Y ↔ 2Y , Y ↔ B. On the other
hand, Simon [19] proved the forward boundedness of the solutions and the existence of
limit cycles via Hopf bifurcation in a reaction A+2X ↔ 3X, X+Y ↔ 2Y , Y ↔ B.
Moreover, Simon [20] achieved the general result that solutions are forward bounded in
systems with a finite number of reaction steps of the form mX + nY ↔ m′X + n′Y .
Our example is not a special case of this, because of the reaction steps A ↔ αX,
βY ↔ B (α,β > 0). These are missing in Simon’s system, which would correspond
to the case α = β = 0 and leads to a different system of differential equations (see
remark 4.1). Finally, it should be mentioned that Dancsó et al. [3] studied a system
that is related to but different from our systems.

We briefly go into studying several of numerous possible applications of the-
orem 2.1. One is a 2-dimensional model for cyclic AMP signaling by Martiel and
Goldbeter [12]. Another one is Rössler’s multivibrator system [15]. The interesting
feature of these is that they realize cases where u and v are not identical.

The appendix deals with a subtle mathematical problem connected to the
Poincaré–Bendixson theorem, which requires nonextendible solutions to be defined
in intervals open on the right-hand side. The latter is not necessarily the case in a
system where the natural domain of the variables consists of the nonnegative real num-
bers. Our non-termination lemma (lemma A.1) proposes a simple way out that might
be of independent interest.
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2. Formulation of the theorem

Theorem 2.1. In the system of differential equations{
ẋ = q(x)− u(x, y),
ẏ = ε(v(x, y)− r(y)),

(∗)

let ε be a positive constant and let q, r, u, v be functions

q, r : [0,∞[→ R, u, v : [0,∞[× [0,∞[→ R,

satisfying a local Lipschitz condition. Moreover, assume that there are a continuous
unbounded nondecreasing function f : [0,∞[→ [0,∞[ and nonnegative constants a1,
a2, c1, c2, c3 such that the following nine conditions hold:

(1) Let S := {(x, ȳ) | 0 6 ȳ 6 f (x)} be the set below the graph of f . Then the
function (x, y) 7→ u(x, y), restricted to S, for each y > 0 is nondecreasing with
respect to x.

(2) The function (x, y) 7→ v(x, y), restricted to S, for each y > 0 is nondecreasing
with respect to x.

(3) For each y > 0, the inequality u(0, y) 6 q(0) holds.

(4) r(0) 6 v(0, 0).

Conditions (1) and (2) admit to define

w(y) := lim
x→∞

u(x, y) ∈ R ∪ {∞},

z(y) := lim
x→∞

v(x, y) ∈ R ∪ {∞}.

(5) If r(0) = z(0) then there is η > 0 such that, for all x > a1 and all y ∈ [0, η],
q(x) < u(x, y). If r(0) 6= z(0) put η := 0.

(6) For all y ∈ ]0, c1], z(y) > r(y).

(7) For all x > 0 and all y > c2, r(y) > q(x). (This implies that q is bounded above.)

(8) Let q̃ := sup{q(x) | x > a2}. Then, for all y > c1, w(y) > q̃.

(9) For all x > 0 and all y > c3, v(x, y) 6 u(x, y).

Then any solution (x(t), y(t)) of system (∗) is defined and bounded for all t > 0.

The proof of theorem 2.1 is deferred to section 5.

Comments 2.2. (i) Technically, the nine conditions are used to lock up a given solution
starting at (x0, y0) in a compact set bounded by line segments. In figure 1 accompany-
ing the proof in section 5, numbers in parentheses attached to a line segment indicate
which conditions are responsible for that the solutions cannot pass through this line
segment from inside out. In this respect, each condition has its place.
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(ii) Rate laws like u(x, y) and v(x, y) typically satisfy some monotonicity con-
dition with respect to the variable x such as condition (1) or (2), respectively. If
u(x, y) and v(x, y) are nondecreasing with respect to x on their entire domain, then f
may be chosen in an arbitrary way. Let us agree on an arbitrary f if f is not
mentioned explicitly. As in our main application this monotonicity is only satisfied
below the graph of a function f , some intricacy in formulating (1) and (2) is unavoid-
able.

(iii) Condition (9) says that rate function v does not exceed u above some level
of y. Though frequently u ≡ v, condition (9) naturally allows for some loss in the
process of converting the first to the second agent.

(iv) The constant c1 occurs in (6) and (8). If c1 = 0 then the interval ]0, c1] is
empty and condition (6) is trivially fulfilled.

(v) The following is worth mentioning because it frequently simplifies applica-
tions. If z(y) =∞ for all y > 0 then (6) is trivially satisfied. Similarly, if w(y) =∞
for all y > c1 then (8) holds for trivial reasons.

(vi) As (1)–(9) do not impose any conditions on the constant ε, the theo-
rem is correct even if the data q, r, u, v, f , a1, a2, c1, c2, c3, and η depend
on ε.

3. Applying the Poincaré–Bendixson theorem

In the context of theorem 2.1 we would like to apply the Poincaré–Bendixson
theorem to assert the existence of periodic solutions enjoying some sort of stability.
The following proposition describes such a situation.

Proposition 3.1. Let q, r, u, v of system (∗) be continuously differentiable and suppose
they fulfil the conditions of theorem 2.1. Moreover, assume:

(i) There is a unique stationary point (xs, ys) with positive coordinates.

(ii) The linearization of the vector field has positive determinant and trace at (xs, ys).

(iii) There is a positively invariant curve emanating from a coordinate axis and keeping
positive distance >δ > 0 from both axes after some time.

Then the system has an orbitally stable closed orbit. If q, r,u, v are real analytic
functions, then an asymptotically orbitally stable closed orbit exists.

Remark 3.2. Mind that apart from the stationary point (xs, ys) additional equilibria on
the axes are allowed. The positively invariant curve of condition (iii) in most cases will
be a positive semi-orbit starting on an axis or the unstable manifold of a hyperbolic
saddle point on an axis.

Proof of proposition 3.1. Realize that using theorem 2.1 we know that solutions are
defined for all t > 0. Therefore any orbit has a well-defined positive limit set (=ω-
limit set). An orbit starting on the invariant curve but not on an axis, has a positive
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limit set not meeting the axes (because of (iii)) and not containing a stationary point
(because of (i) and (ii)), so by the Poincaré–Bendixson theorem it tends to a limit
cycle which is the outermost one due to the Jordan curve theorem. An orbit starting
close to (xs, ys) also tends to a limit cycle (to the innermost one). These two limit
cycles bound a closed annulus which is positively invariant. The proposition in [5]
states that in this case the annulus contains an orbitally stable closed orbit which can
be chosen asymptotically orbitally stable if the vector field is real analytic. �

4. Autocatalytic reactions and other models

In what follows, all parameters will be assumed to be positive unless a different
assumption is explicitly stated. A solution (x(t), y(t)) will be called bounded if it is
bounded for all t > 0.

Remark 4.1. By Schnakenberg’s study [16] of autocatalytic reactions, candidates for
limit cycle behavior abound among systems with two internal reactants. For a result
excluding limit cycles, cf. [13]. Theorem 2.1 leads to a proof – not given in [16,17]
– that solutions are bounded for many such systems and allows a simply stated result
on possible candidates for oscillations.

Assume a chemical system with two internal reactants X,Y and two external
reactants A,B and stoichiometric equations

mX + nY ↔ m′X + n′Y (0 6 m′ < m, 0 6 n < n′),
A↔ αX (α > 0),

βY ↔ B (β > 0).

The stoichiometric coefficients m, n′, α, β are positive integers, m′ and n are non-
negative integers. The mass action type kinetic differential equations consist of{

ẋ = α(k2 − k′2xα)− (m−m′)(k1x
myn − k′1xm

′
yn
′
),

ẏ = (n′ − n)(k1x
myn − k′1xm

′
yn
′
)− β(k3y

β − k′3),
(S)

where x and y are the concentrations of X and Y , respectively, and the constants
ki > 0 and k′i > 0 describe the forward and reverse rate, respectively, in the ith
reaction step above, for i = 1, 2, 3.

Proposition 4.2. Assume k1, k2, k3 > 0 and k′1, k′2, k′3 > 0. Assume furthermore:
either n = 0, or n > 0 and k′3 > 0, or n > 0 and k′3 = 0 and k′2 > 0. Then system (S)
satisfies the hypotheses of theorem 2.1; thus all solutions are bounded for positive time.

Proof. In the notation of system (∗), put

q(x) := α
(
k2 − k′2xα

)
,

u(x, y) = v(x, y) := (m−m′)
(
k1x

myn − k′1xm
′
yn
′)

,
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ε :=
n′ − n
m−m′ , r(y) :=

m−m′
n′ − n β

(
k3y

β − k′3
)
.

∂

∂x
u(x, y) > 0 ⇔ mk1x

m−m′ > m′k′1yn
′−n.

If m′k′1 6= 0 then (1) and (2) are satisfied with

f (x) :=

(
mk1

m′k′1
xm−m

′
)1/(n′−n)

.

If m′k′1 = 0 then (1) and (2) are satisfied with any f . (3) and (4) are trivial. For
n = 0, ∞ = z(0) 6= r(0). Now assume n > 0. Then z(0) = 0, so z(0) 6= r(0)
if k′3 > 0. If k′3 = 0 then z(0) = r(0); but in this case k′2 > 0 by hypothesis, and
there is a1 such that q(x) < 0 for all x > a1. Since n > 0 implies u(a1, 0) = 0, the
inequality u(a1, y) > q(a1) holds for all y ∈ [0, η] if η > 0 is chosen suitably. Then

x > a1 and 0 6 y 6 η ⇒ q(x) 6 q(a1) < u(a1, y) 6 u(x, y),

and (5) is verified in all cases. As z(y) = w(y) = ∞ for any y > 0, (6) and (8) are
true with arbitrary c1 and a2. As k3 > 0, (7) holds and (9) is trivial. �

Remark 4.3. The assumption in proposition 1 cannot be removed. If k′2 = k′3 = 0
for positive n then the x-axis is invariant and k2 > 0 leads to an unbounded positive
semi-orbit on the x-axis. More seriously, there may be unbounded positive semi-orbits
outside the axes, as is shown by the following example: in model II of [18],

ẋ = 1− xy2,

ẏ = xy2 − y,

with reaction steps X + 2Y → 3Y , A→ X, Y → B, an easy calculation shows that
the graph of y = 1/(2x) is crossed from above for sufficiently great x, so – as ẋ > 0
there – solutions below this graph are unbounded.

Proposition 4.4. For any set of numbers satisfying 0 6 m′ < m, 0 < β < n < n′,
and α > 0, there are constants ki > 0, k′i > 0 (i = 1, 2, 3) such that system (S) has
an asymptotically orbitally stable closed orbit. The k′i may be chosen to be arbitrarily
close to 0.

Proof. We want to apply proposition 3.1. First, suppose all k′i are zero. There is a
single equilibrium (xs, ys) with xs, ys > 0, namely

xs =

(
1
k1

(
αk2

m−m′
)1−n/β( βk3

n′ − n

)n/β)1/m

,

ys =

(
(n′ − n)αk2

(m−m′)βk3

)1/β

.
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The determinant of the linearization of the vector field at this point is computed to be

(m−m′)mβ2k1k3x
m−1
s yn+β−1

s > 0.

This means that the two sets, given by ẋ = 0 and ẏ = 0, in a neighborhood of (xs, ys)
are smooth curves intersecting transversally at (xs, ys) and nowhere else. Therefore,
by continuity and by the proposition in [10, chapter 16, section 1], for k′i > 0 suf-
ficiently small, the sets ẋ = 0 and ẏ = 0 still have a unique intersection point with
positive coordinates and the linearization there has a positive determinant. Moreover,
for k′i > 0, there are no equilibria on the axes, and solutions leave the axes transver-
sally (x = 0 ⇒ ẋ > 0, y = 0 ⇒ ẏ > 0). This takes care of assumption (iii) of
proposition 3.1, see remark 3.2. Thus we can apply proposition 3.1, provided the
linearization at the unique equilibrium has a positive trace. Again for k′i = 0, this
trace can be calculated to be

(n′ − n)nk1x
m
s y

n−1
s − (m−m′)mk1x

m−1
s yns − β2k3y

β−1
s

= k3y
β−1
s

(
(n− β)β −Kk1/m

1 k
(m+n−β)/(mβ)
2 k

−(m+n)/(mβ)
3

)
,

with a positive constant K independent of the ki. As n > β, this is clearly positive for
an appropriate choice of the ki (i = 1, 2, 3). By continuity, for all k′i > 0 sufficiently
small, the trace will be positive at the unique equilibrium. This completes the proof
of proposition 4.4. �

Remark 4.5. For n 6 β, the above trace is negative for arbitrary ki > 0 if all k′i
vanish. It stays negative after introduction of sufficiently small k′i > 0.

Martiel and Goldbeter propose a reduction of their model for cyclic AMP signal-
ing to a 2-variable system [12, (7), p. 817] of the form{

ẋ = −x(f1(y) + f2(y)) + f2(y),
ẏ = sΦ(x, y)− ky,

(MG)

where

f1(y) = (k1 + k2y)/(1 + y), f2(y) = (k1L1 + k2L2cy)/(1 + cy),

Φ(x, y) =
α(λθ + ex2y2/(1 + y)2)

1 + αθ + (1 + α) ex2y2/(1 + y)2 .

Proposition 4.6. If 1 +αθ > (1 +α)λθ then system (MG) satisfies the hypotheses of
theorem 2.1 and all solutions are bounded for positive time.

Remark 4.7. In particular, each of max{λ, θ} 6 1, λθ 6 (1 + α)−1 is sufficient.
In practice, this is fulfilled because λ and θ are small constants in the model. The
numerical studies of [12] give biochemically relevant values for the constants allowing
application of proposition 3.1 and realizing asymptotically orbitally stable limit cycles.
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Proof of proposition 4.6. This is a case where the functions u and v of (∗) do not
coincide. Put

q(x) := q =
α

1 + α
+ max{k1L1, k2L2} (constant),

u(x, y) := x
(
f1(y) + f2(y)

)
− f2(y) + q,

ε := s, v(x, y) := Φ(x, y), r(y) := ky/s.

Conditions (1), (3) and (4) are trivial, (2) holds because 1 + αθ > (1 + α)λθ implies
∂v/∂x > 0. z(0) = αλθ/(1 + αθ) > r(0) = 0 whence (5) follows. As w(y) ≡ ∞,
(6) and (8) are fulfilled with c1 = 0 and any a2. (Concerning (6), cf. comments 2.2(iv).)
For (7), choose c2 > qs/k. Furthermore, Φ 6 α/(1 + α) and f2 6 max{k1L1,
k2L2}; therefore, Φ + f2 6 q 6 x(f1 + f2) + q and v 6 u, such that (9) holds with
c3 = 0. �

For Rössler’s multivibrator system{
ẋ = k1x− k2xy/(x+K)− k3x

2 + k4,
ẏ = k5x− k6y

(R)

(cf. [15]), the following holds.

Proposition 4.8. In (R), let k1, k2, k4,K > 0 and k3, k5, k6 > 0. Then the hypotheses
of theorem 2.1 are satisfied and all solutions are bounded for positive time.

Proof. Introduce two additional positive constants ε and c subject to εc > k5. Put

q(x) := k4 + k1x− k3x
2 + cx,

u(x, y) := k2xy/(x+K) + cx,

v(x, y) := k5x/ε, r(y) := k6y/ε.

Then w(y) ≡ ∞, z(y) ≡ ∞, and q is bounded above. Conditions (1)–(8) are verified
by simple calculations (by a choice of c1 = 0). The inequality v(x, y) 6 u(x, y) in (9)
holds for all (x, y) because k5/ε 6 c. �

Remark 4.9. An example of stable oscillations due to proposition 3.1 in (R) is given
by k2 = k3 = k4 = K = 1, k1 = 5, k5 = 3, k6 = 0.3, and (1, 10) as the unique
stationary point.

Remark 4.10. It is striking how many models investigated in the literature are of the
form (∗). The famous Brusselator [14] can be put into this form. The class of systems
for enzyme reactions studied in [6] is a special case of (∗). So are the models of [1]
which require the rate function r to have positive derivative everywhere, a condition
obsolete in applying theorem 2.1. Finally, Gause-type predator–prey models can be
studied via theorem 2.1; many of our conditions (1)–(9) result from natural hypotheses
imposed in [8,11].
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Remark 4.11. An interesting special case of the latter is Ding’s system [4]{
ẋ = cx(1 − x/K)− xny/(a+ xn),
ẏ = µxny/(a+ xn)− dy,

(D)

who imposed n = 1 or 2.
A simple computation shows that, for any n > 1 and for any positive choice of

the parameters, system (D) satisfies the hypotheses of theorem 2.1. Moreover, if(
1− 1

n

)
µ < d < µ

and

K >

(
1 +

µ

nd− (n− 1)µ

)
n

√
ad

µ− d ,

then there is an asymptotically orbitally stable limit cycle by proposition 3.1. Here we
encounter a situation where the nonnegative axes are invariant and contain stationary
points. The unstable manifold of (K, 0) serves as the positively invariant curve in
condition (iii) of proposition 3.1. Choosing

µ = 2n, d = 2n− 1, a =
Kn

(2n− 1)4n
,

c and K arbitrary, leads to numerical values realizing propositions 2.1 and 3.1.

5. Proof of theorem 2.1

For the vector field of system (∗), the notation (ẋ, ẏ) will be used throughout.
Given a solution, the positive semi-orbit stays in a compact set K to be constructed.
In figure 1, numbers in parentheses attached to a line segment bounding K indicate
the conditions accounting for that the solution does not leave K via this line segment.
Note, however, it is not claimed that the set K is necessarily positively invariant.

By condition (3),

ẋ(0, y) = q(0)− u(0, y) > 0 for all y > 0.

By (2) and (4),

ẏ(x, 0) = ε
(
v(x, 0) − r(0)

)
> ε
(
v(0, 0) − r(0)

)
> 0 for all x > 0.

(Note that [0,∞[×{0} ⊂ S.) So, by the non-termination lemma below, all solutions
are defined on maximal intervals half-open on the right, and no solution terminates at
a boundary point of the positive quadrant in the plane.

Let (x0, y0) be an arbitrary initial point. First, assume r(0) = z(0). It is no
restriction to assume a1 > x0. By (5), for any x > a1, on the vertical line segment
with end points (x, 0) and (x, η), the inequality ẋ < 0 holds, and orbits pass through
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Figure 1.

this line segment from right to left. If r(0) 6= z(0) then (4) and (2) imply r(0) < z(0)
and η is zero. In any case, by decreasing η and increasing a1 if necessary, it may be
assumed that η 6 c1 and [a1,∞[× [0, η] ⊂ S.

By (6), z(y) > r(y) for all y ∈ [η, c1]. (This interval is possibly degenerate.)
Therefore, given ỹ ∈ [η, c1], there is x > 0 such that (x, y) ∈ S and v(x, y) > r(y)
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for all y in a neighborhood of ỹ. Compactness of [η, c1] and condition (2) yield
b1 > 0 such that v(b1, y) > r(y) for any y ∈ [η, c1]. Without loss of generality,
b1 > max{x0, a1, a2} and [b1,∞[× [0, c1] ⊂ S. The number

p := min
{
v(b1, y)− r(y) | η 6 y 6 c1

}
is positive. Let qsup := sup{q(x) | x > 0} (finite by (7)). Then on the set{

(x, y) | x > b1 and η 6 y 6 c1
}
⊂ S,

the vector field by (1) satisfies

ẋ(x, y) = q(x)− u(x, y) 6 qsup − u(b1, y) 6M ,

for a suitable positive real number M , and

ẏ(x, y) = ε
(
v(x, y)− r(y)

)
> εp > 0;

hence ẋ/ẏ 6M/(εp), and orbits pass through any line segment of slope εp/(2M ) in
this set from below.

Let c̃ > max{y0, c1, c2, c3}. By compactness of [c1, c̃ ] and an argument already
used above, (8) and (1) imply: there is b2 > b1 such that [b2,∞[× [0, c̃ ] ⊂ S and
u(b2, y) > q̃ for all y ∈ [c1, c̃ ]. Thus, if x > b2 and y ∈ [c1, c̃ ] then

ẋ(x, y) = q(x)− u(x, y) 6 q̃ − u(b2, y) < 0,

and orbits pass through the vertical line segment with end points (x, c1) and (x, c̃ )
from right to left.

Define C to be the compact set bounded by a closed polygonal curve joining the
ordered vertices (0, 0), (ξ1, 0), (ξ1, η), (ξ2, c1), (ξ2, c̃ ), (0, c̃ ), (0, 0), where ξ1 > b1 and
ξ2 > b2, subject to the condition that the line through (ξ1, η) and (ξ2, c1) has slope
εp/(2M ), except when η = c1; in the latter case, choose ξ1 = ξ2. Then the positive
semi-orbit of any point in C (e.g., (x0, y0)) can leave C only via the top horizontal
edge.

Define T the compact triangular surface with vertices (0, c̃ ), (ξ2, c̃ ) and a third
vertex on the y-axis such that one edge, denoted E, has slope −2ε. Let K := C ∪ T .
As will be seen, a positive semi-orbit of a point in C cannot leave K. This is due to
the limitations on the directions of the vector field in T , namely:

Let (x, y) with y > c̃.
Case 1: u(x, y) > q(x). Then ẋ(x, y) < 0. Moreover,

(a) ẏ(x, y) 6 0, or

(b) ẏ(x, y) > 0, in which case the following holds at (x, y):

v > r (as ẏ > 0) and r > q (because of (7))

⇒ 0 < v − r 6 u− q (because of (9))

⇒ 0 < ẏ/(−ẋ) 6 ε;
hence 0 > ẏ/ẋ > −ε > −2ε.
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Case 2: u(x, y) = q(x). Then at (x, y), ẋ = 0 and ẏ = ε(v − r) 6 ε(u− q) = 0
(by (7) and (9)). The vector field is stationary or points vertically down at (x, y).

Case 3: u(x, y) < q(x). Then at (x, y), ẋ > 0 and ẏ = ε(v − r) 6 ε(u− q) < 0
(by (7) and (9)).

Suppose a solution ϕ(t) = (x(t), y(t)), with initial point (x1, y1) ∈ C at t = 0,
leaves K. The last point in C (before it leaves K) has y-coordinate c̃ ; so, one may
assume that (x1, y1) is this last point and y1 = c̃. Let ϕ leave K for the first time
at t = t4. Then (x4, y4) := ϕ(t4) ∈ E. As E has slope −2ε, cases 1 and 2 above
are ruled out at (x4, y4). Thus, at (x4, y4), ẋ > 0 and ẏ < 0 according to case 3, and
y(t) > y4 for some t < t4. Let y|[0, t4] take on its last maximum y2 at t = t2, and
let (x3, y3) := ϕ(t3) be the first point on E with t2 6 t3 6 t4. Then ẏ(t2) = 0 and
ẋ(t2) 6= 0, so ẋ(t2) < 0 (case 1), and ϕ(t2) is in the interior of T . Therefore, t2 < t3.
Moreover, y2 > y3. Let J be the closed Jordan curve consisting of ϕ([t2, t3]) and the
two line segments joining the point (x̃, y2) ∈ E with ϕ(t2) and ϕ(t3). J is contained
in T .

As ϕ([0, t2]) ⊂ T , as the line segment from ϕ(t2) to (x̃, y2) is not completely
contained in ϕ([0, t2]), and, as y(t) 6 y2 for all t ∈ [0, t2], there is some t ∈ [0, t2] such
that ϕ(t) is contained in the interior region of J . Therefore, all of ϕ([0, t2]) is contained
in that region, which is a subset of the interior of T . But ϕ(0) = (x1, y1) = (x1, c̃ ) is
not in int(T ); a contradiction.

This shows that ϕ(t) stays in K for all t > 0 for which it is defined. As K is
compact, ϕ(t) is defined for all t > 0. This completes the proof of theorem 2.1. �

Appendix

Lemma A.1 (non-termination lemma). Let Pn ⊂ Rn be the nonnegative orthant
Pn = [0,∞[n, V ⊂ Pn a subset open in Pn, G :V → Rn a vector field satisfying a
local Lipschitz condition and the following hypothesis:

If k ∈ {1, . . . ,n} and x ∈ V such that xk = 0 then Gk(x) > 0.

(The index k indicates the kth component.) Then the differential system

ẏ = G(y)

has a solution semi-flow Ψ :W → V on an open subset W of [0,∞[× V .

This means, if y0 ∈ V then the initial value problem ẏ = G(y), y(0) = y0, has a
unique solution on a half-open interval [0, τ [ that cannot be extended on the right-hand
side. In particular, following a nonextendible solution in positive direction does not
terminate at some point of the boundary of Pn.

Remark A.2. The proof below consists of two steps: extension of the vector field to
an open set in Rn and proof of a “non-exit lemma” (not explicitly stated) saying that
solutions of the extended system do not leave Pn in positive time direction.
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Proof of lemma A.1. Define ρ :Rn → Pn by

ρk(x1, . . . ,xn) :=

{
xk if xk > 0,
0 if xk < 0,

for k = 1, . . . ,n. The vector field ρ is the identity on Pn. Let U := V ∪ ρ−1(V ∩
bd(Pn)), F :U → Rn, F := G◦ρ, where bd = boundary. The vector field F is defined
on the open set U in Rn, satisfies a local Lipschitz condition and coincides withG on V .

Solutions of ẏ = F (y) are solutions of ẏ = G(y) as long as they stay in V .
Let Φ be the solution semi-flow of ẏ = F (y) on U , and let z ∈ V ∩ bd(Pn). It is
sufficient to show that Φ(t, z) ∈ Pn for all t > 0 for which Φ(t, z) is defined. Assume
Φ(t1, z) /∈ Pn for some t1 > 0. Then Φk(t1, z) < 0 for some k, and there is t0 ∈ [0, t1[
such that Φk(t0, z) = 0 and Φk(t, z) < 0 for all t ∈ ]t0, t1],

Φk(t1, z) = Φk(t0, z) +

t1∫
t0

∂

∂t
Φk(t, z) dt =

t1∫
t0

Gk ◦ ρ
(
Φ(t, z)

)
dt,

t ∈ ]t0, t1] ⇒ ρk ◦Φ(t, z) = 0 ⇒ Gk ◦ ρ
(
Φ(t, z)

)
> 0.

Hence, Φk(t1, z) > 0, a contradiction. Therefore, Φ(t, z) ∈ Pn for t > 0 if defined. �
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[15] O.E. Rössler, A principle for chemical multivibration. Letter to the Editor, J. Theor. Biol. 36 (1972)
413–417.

[16] J. Schnakenberg, Simple chemical reaction systems with limit cycle behavior, J. Theor. Biol. 81
(1979) 389–400.

[17] J. Schnakenberg, Thermodynamic Network Analysis of Biological Systems, 2nd correct. updated ed.
(Springer, Berlin, 1981).

[18] E.E. Sel’kov, Self-oscillations in glycolysis. 1. A simple kinetic model, Eur. J. Biochem. 4 (1968)
79–86.

[19] P.L. Simon, The reversible LVA model, J. Math. Chem. 9 (1992) 307–322.
[20] P.L. Simon, Globally attracing domains in two-dimensional reversible chemical dynamical systems,

Ann. Univ. Sci. Budapest. Sect. Comput. 15 (1995) 179–200.
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